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Abstract We consider a savings plan, where the paid capital is guaranteed at time

of retirement, in the German market available as Riester-Rente and supported by

federal cash payments and tax benefits. We generalize several capital guarantee

mechanisms to payment plans and compare their distribution: the return distribution

of a classical insurance strategy with investments in the actuarial reserve fund, a

CPPI strategy, and a Stop loss strategy, in optimistic, standard and pessimistic

market scenarios. To model the distribution we use a jump diffusion process

parameterized to resemble the MSCI World index for the stock investment and a

Hull-White Extended Vasicek process, calibrated to the euro zero-bond curve, for

the risk free investment. We also analyze how fee structures and gap risk affect the

performance of these savings plans. Additionally, we present a very simple

parameter estimation method for this kind of simulation studies.
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1 Introduction

In recent years an increasing demand for capital guaranteed equity-linked life

insurance products and retirement plans has emerged. In Germany a retirement plan

called Riester-Rente is supported by the state with cash payments and tax benefits.

The retirement plans have to preserve invested capital. The company offering a

Riester-Rente has to ensure that at the end of the savings period at least all cash

inflows are available. Due to investors’ demand for high returns, banks and

insurance companies are not only offering saving plans investing in risk free bonds

but also in products with high equity proportion. Companies offering equity-linked

guaranteed retirement plans face a big challenge. Due to long maturities of the

contracts of more than 30 years it is not possible to just buy a protective put as is

usually done when hedging the short term risk of investments. Many different

concepts are used by banks and insurance companies to generate this guarantee or to

reduce the remaining risk. They vary from simple Stop loss strategies to complex

dynamic hedging strategies. In our work we analyze the return distribution

generated by some of these strategies and determine their risk. We consider several

examples:

– A classical insurance strategy with investments in the actuarial reserve fund. In

this strategy a large proportion of the invested capital is held in the actuarial

reserve fund to fully generate the guarantee. Only the remaining capital is

invested in products with a higher equity proportion. The actuarial reserve fund

is considered risk free. It usually guarantees a minimum yearly interest rate.

– A capped constant proportion portfolio insurance strategy (CPPI), which is

similar to the traditional reserve fund in that it ensures not to fall below a certain

floor in order to generate the guarantee. In contrast to the traditional strategy the

amount necessary to generate the guarantee is not fully invested in risk free

products. The amount invested in more risky equity products is leveraged for a

higher equity exposure. Continuous monitoring ensures that the guarantee is not

at risk, since the equity proportion is reduced with the portfolio value

approaching the floor.

– A Stop loss strategy where all the money is invested into pure equity until the

floor is reached. If this happens all the invested capital is shifted into the risk

free products in order to provide the guarantee at the end.

There are also equity-linked life insurance guarantees where the insurance

company promises to pay out the maximum of the invested amount and an

investment in an equity fund reduced by a guarantee cost (usually yearly as a

percentage of the fund value). The return distribution of these products highly

depends on the guarantee cost. Due to the long maturities of the contracts, the

pricing of this guarantee cost is not straightforward and the price is strongly model-

dependent. For this reason they are not included in this comparative study. An

introduction to equity-linked guarantees and their pricing can be found in [14].

After generalizing the strategies for a stream of payments, we simulate their

return distribution and analyze how fee structures often used by insurance

companies affect the return distribution. Since relevant for the German market
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we also study the impact of the federal cash payments by analyzing an investment

plan that maximizes them.

In order to model the distribution of the stock market we extend the jump

diffusion model by Kou [15] to allow for displaced jumps. Therefore, we go beyond

the classical Black-Scholes model [7] and explicitly allow for jumps in the market

as we could observe them within the last two years. One reason for using a jump

diffusion model instead of a simple geometric Brownian motion is that it better

represents reality by accounting for the heavy tail distribution of stock index returns.

Therefore not only the simulation of the underlying process is more realistic but also

the rebalancing between equity and fixed income funds in the strategies under

consideration. The second reason is that Stop loss and CPPI both only generate a

safe guarantee in a market without jumps. We analyze how often a CPPI and a Stop

loss strategy fail if we allow for jumps. We present a very simple procedure for

estimating parameters for jump processes that avoids the stability problems one

usually experiences when estimating jump diffusion parameters by means of

moment matching or other techniques.

In most of the literature the floor for CPPI and Stop loss is assumed to change

only deterministically over time. This is not a realistic assumption since the floor is

usually determined by the zero bond price with the same maturity as the structure

itself and zero bond prices are far from being deterministic. Also the performance of

the actuarial reserve fund depends on the current level of interest rates. For this

reason we model rates by a Hull-White Extended Vasicek process, calibrated to the

euro zero bond curve as of November 2009.

Past research on simulating the actuarial reserve fund has mainly focused on the

purpose of asset liability management (ALM), see [1, 9, 13] and the references

therein.

Extensive research is available on the general theory of constant proportion

portfolio insurance. Black and Perold [6] derive general properties of uncapped

constant proportion portfolio insurance under log normally distributed stock returns.

The impact of discrete trading in this model is analyzed in [2]. Several authors

discuss the relation between CPPI and option based portfolio insurance (OBPI) [4,

5]. The distribution properties in the continuous case for CPPI with constraints on

borrowing is done in [3] where it is shown that the log normality of the cushion

process is lost in this case. An analysis of uncapped CPPI structures under jump risk

is done in [11]. We present an analysis for the capped CPPI with jump risk and

interest rate risk. Balder and Mahayni also focus on Stop loss in [3], which can be

seen as a special limiting case of capped CPPI.

Despite these articles dealing with different strategies there is no simulation

study that compares all those when they are used in the context of pension plans. A

simulation of several different strategies under a continuous model is done in [10]

but lacks the actuarial approach and considers only a single payment instead of

payment streams.

We provide a comprehensive study comparing guarantee structures used for

pension funds. This study is applicable to the Riester-Rente in Germany, but also to

general guaranteed pensions plans. We base our analysis on a model that is

parametrized to a well known global stock index, the MSCI World, and fits the
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distribution of its returns very well. Moreover we take into account the additional

risk of stochastic rates. Instead of assuming a single payment at the beginning, as is

usually the case when assessing CPPI and Stop loss structures, we analyze a plan

with monthly payments, as it is the natural case in pension business, for two reasons.

Firstly, this has an impact on the average stock exposure since in the case of a de-

leveraging (also called Cash-Lock) due to a large market drop shortly after the start

of the saving period, the following monthly payments are able to build up a new

equity investment over time. Secondly, this is also important for a realistic analysis

of the gap risk in CPPI and Stop loss. Our detailed analysis of the impact of path

dependent fees charged by the insurance companies is of large practical interest

from a client perspective. We also analyze to what extent these large fees can be

compensated by payments from the state, which the insurant receives in case of the

Riester-Rente in Germany. Our in-depth explanation of the simulation technique

and parameter estimation should also provide a guideline for similar simulation

studies. A less detailed analysis under simplified assumptions can be found in [12].

Our conclusion is that one of the driving factors of the return distribution of the

Riester-Rente product is the concept that is used to generate the guarantee. With

equity exposure ranging from 36% to 100% the return distributions vary

significantly. For a monthly saving plan and a small leverage factor of 3 or 4 the

risk of failing to generate the guarantee in the CPPI structure turns out to be rather

small even when rates are stochastic due to the continuous exposure reduction in

periods of negative equity returns. Another very important factor of the return

distribution is the fee structure of the contract. For some contracts only 85 % of the

capital is actually invested in the strategy. The remaining 15% is taken by the

insurance or bank as sales and maintenance fees. With yearly management fees of

the underlying funds the return distribution is additionally weakened.

This paper is organized as follows. In Sect. 2 we describe the equity and interest

rate model used for simulation and parameter estimation. In Sect. 3 we provide a

description of the capital guarantee mechanisms being compared and their

generalization to payment streams. Section 4 describes the simulation horizon

and the payments. In Sect. 5 we exhibit and analyze the results not considering

costs, Sect. 6 introduces the cost structures we analyze and presents the results

including costs. The risk of failing to generate the guarantee in case of jumps is

studied in Sect. 7. Section 8 concludes.

2 Model setup

As mentioned in Sect. 1, we would like to go beyond the classical Black-Scholes

model and allow for exponentially distributed jumps in the market. We extend the

model by Kou [15, 16] by allowing the jumps to be displaced. This allows us to

distinguish between the small movements arising from the discretization of the

Brownian motion, which in theory has no jumps, and the larger movements (jumps)

arising from the Poisson component of the process. It is therefore assumed that the

logarithm of the jumps can take values only outside the interval (- j, ? j). This is
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different from [15] in which, instead, jumps can take any value in the set of non-

zero real numbers.

The governing equation for the displaced double exponential jump diffusion

model (DDE) is

dSt

St�
¼ cdt þ r1dW

1
t þ d

X

Nt

j¼1

ðVj � 1Þ

 !

which is solved by

St ¼ S0 exp c�
r21
2

� �

t þ r1W
1
t

� �

Y

Nt

j¼1

Vj ð1Þ

where

– (Wt
1) is a standard Brownian motion,

– (Nt) is a Poisson process with intensity k[ 0 and

– Vj are independent identically distributed random variables Vj* eY, where Y

represents the relative jump size with a minimal jump of j, therefore leading to

jumps of Y in the range ð�1;�j� [ ½j;þ1Þ;

with parameters

– c denoting the drift,

– r1 denoting the volatility,

– k denoting the expected number of jumps per year.

The processes (Wt
1), (Nt), and the random variables Vj are all independent. We

choose the jumps Y to be double-exponentially distributed assuming only values

outside the interval (- j, ? j).

We illustrate sample paths drawn from this distribution for a period of 35 years

in Fig. 1.

Except for the drift, the parameters are estimated to resemble the daily log returns

of the MSCI World index1 for the last thirty years. For the drift we choose different

scenarios. The details of the parameter estimation are given in Appendix 1. We

show the main parameters in Table 1. We do not intend to simulate actively

managed funds.

To calculate the current value of the future liability (floor) and the performance

of the fixed income investments we use the zero bond curve as of October 1 2009.

The curve D0;t ; 0� t� T is extracted from money market and swap rate quotes

from Reuters by bootstrapping. Interpolation is done linear in the rates. See Table 2

for the calculated discount factors and the market quotes as provided by Reuters.

We simulate twice, once with the zero bond curve kept deterministic. In this case

market risk is only due to the equity process and the zero bond price at time t[ 0 is

given by

1 MSCI Daily TR (Total Return) Gross (gross dividends reinvested) in USD.
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Dt;T ¼
D0;T

D0;t
:

In a second run we also simulate the short rate. The stochastic short rate increases

the risk for these capital guarantee structures because the guarantee level of the

future liabilities is stochastic as well. For modeling the short rate we use a Hull-

White Extended Vasicek model as described for example in [8].

The process has the governing equation

drt ¼ #t � art½ �dt þ r2dW
2
t ð2Þ

with constants a and r2 and time dependent 0t chosen to exactly fit the term

structure of interest rates. The Brownian motions W1 and W2 are usually correlated

by q. For simplicity we use q = 0 in this study. The advantage of this process is its

perfect fit to the current yield curve of interest rates, which ensures that at the

beginning of the simulation the allocation decision is really as it would be on
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Fig. 1 Displaced Double-Exponential jump process: simulated paths with parameters l:=c ? kE[eY -

1] = 6 %, r1 = 14.3 %, k = 5.209, j = 2.31 %

Table 1 Estimated parameters for the DDE-process

Parameter Value

Volatility of the diffusion part r̂1 11.69%

Jump intensity k 5.209

Minimum jump size j 2.31%

Expected jump size above minimum jump size 1.121%
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October 1 2009. We therefore calibrate the parameters in (2) to the observed initial

term structure of interest rates D0;t ; 0� t� T and simulate the future rates. We

assume that the price for a zero-coupon bond with maturity T at time t, given the

short rate rt, is calculated by

Dt;T ¼ At;T exp �Rt;Trt
� �

with

Rt;T ¼
1� exp �a T � tð Þð Þ

a

and

Table 2 Extracted discount factors from money market quotes and swap rates

Date Instrument Rate (%) Discount factor D0,T (%)

11/3/2009 Money market 0.43 99.96

12/3/2009 Money market 0.59 99.89

1/4/2010 Money market 0.75 99.80

2/3/2010 Money market 0.84 99.71

3/3/2010 Money market 0.92 99.61

4/5/2010 Money market 1.01 99.48

5/3/2010 Money market 1.06 99.37

6/3/2010 Money market 1.10 99.26

7/5/2010 Money market 1.14 99.13

8/3/2010 Money market 1.18 99.01

9/3/2010 Money market 1.20 98.88

10/4/2010 Swap 1.20 98.80

10/3/2011 Swap 1.71 96.64

10/3/2012 Swap 2.15 93.76

10/3/2013 Swap 2.46 90.64

10/3/2014 Swap 2.71 87.30

10/5/2015 Swap 2.92 83.85

10/3/2016 Swap 3.15 80.11

10/3/2017 Swap 3.24 77.01

10/3/2018 Swap 3.36 73.71

10/3/2019 Swap 3.46 70.47

10/5/2020 Swap 3.55 67.25

10/4/2021 Swap 3.64 64.09

10/3/2022 Swap 3.72 61.07

10/3/2023 Swap 3.79 58.18

10/3/2024 Swap 3.84 55.43

10/3/2029 Swap 3.99 44.76

Reuters page ‘‘EURIRS’’. The dates are quoted in American convention as Month/Day/Year
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At;T ¼
D0;T

D0;t
exp �Rt;T

o lnD0;t

ot
�
r22 1� expð�2atÞð ÞR2

t;T

4a

 !

:

To have an analytic expression is of advantage concerning the computational time

of the simulations, because the calculation of the zero-coupon bond price is required

in every time step to compute the current value of the future liabilities.

3 Products

In this section we describe the capital guaranteeing investment strategies as well as

the assumptions we made for implementing them. All strategies rely on rebalancing

invested money between a risk free and a risky investment. In practice, there is

usually no totally risk free investment available. In the following we refer to ‘‘fixed

income fund’’ as the risk free fund and assume that it invests in high rated

government bonds with maturity according to the strategy under consideration. We

refer to ‘‘equity fund’’ as the risky fund, which is assumed to invest in the MSCI

World index. According to the standard version of a pension plan we consider in our

study a stream of payments p0; . . .; pn at time points t0; . . .; tn before maturity,

denoted by T, instead of a single payment p0 as it is usually done when comparing

dynamic capital structures. At each payment time ti the amount guaranteed by the

insurance company increases by pi
2. With

G0 ¼p0

Gi :¼Gi�1 þ pi; i ¼ 1; . . .; n

we define

Bt :¼Gi for t 2 ½ti; tiþ1Þ; i ¼ 0; . . .; n� 1

Bt :¼Gn for t 2 ½tn; TÞ
ð3Þ

as being the guarantee level in place at time point t.

3.1 Classical insurance strategy with investment in the actuarial reserve fund

The current value of the future liability is calculated and a sufficient amount to meet

this liability in the future is invested in the actuarial reserve fund. The actuarial

reserve fund is assumed to be a fixed income fund and accrues interest implied by

the current zero bond curve with a minimum guaranteed rate of 2.25 %3. The excess

amount that is not required for the guarantee is invested in the risky asset. We

assume that the calculation of the amount needed to meet future liability is based on

the guaranteed interest rate of 2.25 %. So, at each payment date ti the amount

2 Note that in the following it is not assumed that the insurance company knows about all payments at the

beginning.
3 This applies to life insurance contracts in Germany until the end of 2011. For contracts signed after

December 2011 the guaranteed interest is 1.75%.
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pi 1þ 2:25%ð Þ�ðT�tiÞ is invested in the actuarial reserve fund and pi �

pi 1þ 2:25%ð Þ�ðT�tiÞ in the equity fund. See Fig. 2 for a picture of the exposure

distribution in the classical insurance case. The excess return of the actuarial fund

above the guaranteed interest is assumed to be added to the equity fund once a year.

3.2 Constant proportion portfolio insurance (CPPI)

The constant proportion portfolio insurance (CPPI) also invests some proportion

into a fixed income fund and the residual part into the more risky equity fund. The

difference to the actuarial fund is that instead of investing only the excess amount of

the protection level (floor) Ft into the risky asset, the excess amount is leveraged in

order to allow for a higher equity participation. The investment is monitored on a

continuous basis to guarantee that the investment does not fall below the floor. The

original CPPI is based on a constant value B which has to be protected at a certain

time T, different to the situation we described for the payment stream where Bt can

increase over time. Let Ft be the present value of the future liability B, so

Ft :¼ Dt;TB

with Dt,T being the price at time point t of a zero bond maturing at T. Investing the

amount Ft risk free could guarantee B in T. Let further Pt denote the total value of

the fund and m a positive leverage factor. The amount that can be invested in the

risky asset at time t, Et (also called exposure), is determined by the equation

Et ¼ min m Pt � Ftð Þ;Ptð Þ:
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Fig. 2 Simulated path for a classical insurance strategy and 10 year investment horizon
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The fixed income investment then is Pt - Et. The excess of Pt over Ft is often

called cushion in the CPPI literature. The leverage factor determines the par-

ticipation in the equity returns. The higher the leverage factor m, the higher the

participation in returns but also the risk to reach the floor. The values commonly

used for m are between 2 and 4 for these saving plans, but banks also sell more

aggressive CPPI structures with leverage factors of 5 and higher. For a sample

path of a CPPI structure with leverage factor 3 and its equity and fixed income

distribution see Fig. 3. For a leverage factor of 1, the CPPI becomes static in the

sense that no rebalancing is necessary. This strategy guarantees 100 % capital

protection in a continuous model. In a model with jumps this is not the case.

The strategy is subject to gap risk, which is the risk that due to a jump in the

market rebalancing is not possible and the fund value drops below the floor. We

neglect liquidity issues here, which would cause an additional risk. However, due

to continuous reduction of equity exposure, this risk is rather small compared to

the risk of a Stop loss. In the general theory of constant proportion portfolio

insurance the exposure is often not assumed to be capped by the portfolio value,

but for the investment plans considered here borrowing is not allowed. See for

example [6] for the general theory of constant proportion portfolio insurance. In

the usual Black Scholes model with constant volatility where the stock St is

modeled by

dSt

St
¼ ldt þ rdWt

and interest rates are kept deterministic, the final value of the uncapped CPPI can be

shown to be

Pt ¼ BDt;T þ
P0 � BD0;T

Sm0
exp 1� mð Þ � lnD0;t

� �

þ m� m2
� � r2

2
t

� 	

Smt : ð4Þ

A very interesting property is that the uncapped CPPI is not path dependent. It is just

the sum of a fixed income investment and a part proportional to St
m. This repre-

sentation can be found in [2] for the case of constant rates. The generalization for

the case of deterministic but not necessarily constant rates is straightforward. By the

same arguments as used in [2] one can show that the expectation of Pt can be

increased to any value by increasing the leverage factor as long as the equity

drift lt is greater than the integrated forward rate
R t

0
f0;sds ¼ � lnD0;t: For the sake

of completeness we derive (4) and E Pt½ � in Appendix 2. These properties are lost in

the capped version as shown in [3].

In our study we consider a stream of payments p0; . . .; pn at time points t0; . . .; tn
instead of a single payment p0 as in the situation described above. One possibility to

treat this situation could be to set up n independent CPPI structures Pt
i starting at

time points t0; . . .; tn each with its own rebalancing equation Ei
t ¼

min m Pi
t � Fi

t

� �

;Pi
t

� �

where Ft
i
= Dt,T pi. The total portfolio value Pt would then be

Pt ¼
X

ijti � t

Pi
t:
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This setup seems unreasonable from a computational and administrative point of

view. Therefore we assume that the insurance company only holds one CPPI

portfolio for each insurant and handles the payments such that they increase the total

guarantee of the CPPI. The floor to be protected is then Ft = Dt,T Bt with Bt as

defined in Eq. (3).

It can easily be seen from the definition above that in the uncapped case there is

no difference between setting up n individual CPPI funds at time points t0; . . .; tn or
only increasing the guarantee level of a single CPPI structure at each time point ti. In

the capped CPPI, instead, this procedure can lead to a higher equity proportion since

min m Pti � Fti�ð Þ;Pti½ � þmin m pi � Dt;Tpi
� �

; pi

 �

� min m ðPti þ piÞ � ðFti� þ Dt;TpiÞ
� �

;Pti þ pi

 �

;

where a strict inequality arises if m Pti � Ftið Þ\Pti and m pi � Dt;Tpi
� �

[ pi; or

viceversa.

3.3 Stop loss strategy

In the Stop loss strategy 100 % of the invested amount is held in the risky fund as

long as its value is larger than the floor. When this value reaches the floor, or goes

below, all the investment is moved to the fixed income fund to generate the

guarantee at maturity. See Fig. 4 for a path where the Stop loss barrier is reached

and all the investment is shifted into the fixed income fund. With Pt being the fund

value at time t we define the stopping time
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Fig. 3 Simulated CPPI path with leverage factor 3 and 10 years investment horizon
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s :¼ infft� 0 : Pt �Ftg

with Ft = Dt,T Bt. The strategy invests for t\ s in the equity fund and for t C s in

the fixed income fund. Just like the CPPI strategy, in a continuous model, it is risk

free in the sense that Pt can reach the floor but there is no risk that it goes below.

However, in a model with jumps we are subject to gap risk. We neglect liquidity

issues here, which actually force the insurer to liquidate the risky asset before it

reaches the floor level. This issue becomes especially important for large funds,

which is often the case for retirement plans or life insurance products since the

amount to liquidate is so large that its trading actually influences the market.

The question is how to generalize the Stop loss strategy to payment streams. In

case there was no investment in the fixed income fund before time point ti the

situation is clear. The new cash flow pi is invested in equity and the guarantee level

increases from Bti� to Bti . If at a time point later than ti the fund falls below

Ft = Dt,T Bt all investment is moved to the fixed income fund. However, it is not

clear what to do after the Stop loss was triggered. In case there is no huge gap loss

due to a large market jump, the new cash flow could actually bring the total account

value Pt back above the floor level Fti , at least if the discount factor Dt,T is below 1,

in which case Dt,T pi B pi. Therefore, it would be possible to move all the

investment back into the equity fund until Ft is reached again for t C ti. However, in

our situation of a payment stream with many small payments, this procedure doesn’t

seem reasonable because the difference Pti � Fti can be so small that it is very likely

that all the investment has to be moved back to the fixed income fund very soon.

Therefore, we assume that the fixed income fund has only positive cash flows during

the lifetime of the contract. Once money is invested in the fixed income fund, it
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stays there until maturity. New cash inflow from the client is always invested in

equity and as soon as the total fund value (fixed income and equity fund) reaches Ft

all money is invested in the fixed income fund. This is a practical approach and

generalizes the Stop loss concept to payment streams.

4 Payments to the contract and simulation horizon

Since capital guaranteed life insurance products are especially popular in Germany

under the master agreement of the Riester-Rente, we consider a typical payment

plan with an horizon of 20 years. To be eligible for the maximal amount of cash

payments and tax benefits the insured has to spend at least 4 % of his yearly gross

income for the insurance product, including the federal cash payments, but no more

than 2,100 Euro. In this case he receives federal cash payments of 154 Euro per

year, and additional 185 Euro for each child born before January 1 2008 and 300

Euro for each child born on or after this date. Even though this is not the focus of

this paper, we assume a savings plan that allows for these benefits in order to

compare typical cost charges against the state benefits. We consider the situation of

a person being 45 years old4 when entering the contract and earning 30,000 Euro a

year. We further assume that he has one child born after January 1 2008 but before

entering the contract. In this case the insured receives 454 Euro from the state, so he

actually only has to pay 746 Euro per year to reach 1,200 per year (4 % of his

income). This is a very high support rate of 37.8 %. For comparison, if we take an

investor without children, earning 52,500 Euro per year, the support rate would be

only 7.3 %. We assume a monthly payment of 100 Euro and do not distinguish

between payments made by the state and by the insured. The total nominal amount

is 20 9 1, 200 = 24,000 Euro if we assume that he retires in 20 years. This is the

amount the issuer of the plan needs to guarantee at retirement. There is no guarantee

during the lifetime of the contract. Especially in the case that the insured dies before

retirement, the current payments to the contract are not guaranteed and only the

current account value can be transferred to another contract or paid out. In case the

contract is terminated early, payments from the state will be claimed back.

5 Results without costs

We present the simulation results for different scenarios. Since the drift is hard

to estimate from past realizations, we consider three different drift assumptions.

In Fig. 5 it can be seen how the distribution varies between the different

strategies under the DDE-model with stochastic rates in the standard scenario

with l = c ? k E [eY - 1 ] = 6 %.

In Tables 3, 4 and 5 we list the mean and the median of the accumulated capital

available at retirement for all three scenarios. Also the average equity exposure is

4 The age of the insured is actually not important but it determines the lifetime of the contract as the time

to retirement.
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shown for all strategies. It is calculated as an average over time and over

simulations. The Stop loss strategy has an expected distribution very close to the

pure equity investment since it has the highest equity participation. Therefore for the

bullish investor this might be the optimal investment for his Riester-Rente or for a

general investment plan with capital guarantee. A similar return profile is provided

by a CPPI structure with a high leverage factor. The advantage of the CPPI product

in practice is that due to the continuous reduction of the equity exposure if the

market performs badly, the liquidity issue is smaller than for the Stop loss strategy.

However, as can be seen in Fig. 5, the risk of returns close to zero is rather high for

both, the Stop loss and the CPPI with a high leverage factor. For the bearish investor

a classical product with an investment mainly in the actuarial fund or a CPPI

product with a small leverage factor could be the better choice. The effect of

stochastic rates varies between the strategies. The actuarial fund gains from

stochastic rates due to its guaranteed level of interest of 2.25%, which has the effect

that the portfolio gains from increasing rates while being protected against rates

falling below 2.25%. The other structures suffer from the higher risk to end in a

Cash-Lock, a situation where all the money is invested in the fixed income fund and

only new cash inflow is partly invested in the equity fund.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 20  40  60  80  100  120  140  160

Actuarial fund

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 20  40  60  80  100  120  140  160

CPPI leverage 1.5

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 20  40  60  80  100  120  140  160

CPPI leverage 2.0

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 20  40  60  80  100  120  140  160

 20  40  60  80  100  120  140  160  20  40  60  80  100  120  140  160

CPPI leverage 3.0

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

CPPI leverage 4.0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

Stop Loss

Fig. 5 Return distribution of the different strategies. We list the capital available at retirement (in units

of 1,000 EUR) on the x-axes
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6 Impact of costs

We study the impact of different cost structures observed in insurance products.

Often the fee structure is rather complex and consists of a combination of various

fees.

– Sales and Distribution cost: These costs are usually charged to pay a sales fee for

the agent who closed the deal with the insured. These fees are usually dependent

on the total cash contracted to pay into the product until maturity. However they

Table 3 Results in the standard scenario (drift l = 6%)

Strategy Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

Actuarial 40,933 39,406 36.77 41,635 40,082 38.30

CPPI leverage 1.5 43,570 38,820 73.35 43,165 38,492 72.95

CPPI leverage 2 44,657 38,126 87.68 44,252 37,760 86.82

CPPI leverage 3 45,160 39,785 93.94 44,937 39,488 93.40

CPPI leverage 4 45,279 40,525 95.48 45,109 40,321 95.04

Stop loss 45,392 40,903 96.56 45,269 40,733 96.10

Table 4 Results in the optimistic scenario (drift l = 8%)

Strategy Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

Actuarial 45,100 43,077 39.17 46,002 43,911 40.74

CPPI leverage 1.5 53,069 46,039 78.94 52,435 45,522 78.40

CPPI leverage 2 55,864 48,571 92.57 55,353 47,948 91.74

CPPI leverage 3 56,793 51,018 97.08 56,581 50,768 96.70

CPPI leverage 4 56,970 51,302 98.01 56,826 51,155 97.73

Stop loss 57,084 51,433 98.63 56,975 51,324 98.34

Table 5 Results in the pessimistic scenario (drift l = 4%)

Strategy Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

Actuarial 37,693 36,535 34.48 38,243 37,099 35.96

CPPI leverage 1.5 37,153 34,069 67.72 36,908 33,874 67.44

CPPI leverage 2 36,889 32,365 81.62 36,601 32,148 80.82

CPPI leverage 3 36,713 30,885 89.09 36,516 30,698 88.46

CPPI leverage 4 36,668 30,848 91.22 36,503 30,602 90.64

Stop loss 36,722 32,200 92.84 36,592 31,959 92.19
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are charged uniformly distributed over the first 5 years of the contract. In

insurance business they are called a-cost.

– Administration cost: These costs are charged on the cash payments to the

contract during the entire lifetime of the contract. They are charged to cover

administrative costs of the contract. In insurance business they are called b-cost.

– Capital management cost (Cost on accumulated payments): These costs are

charged based on the sum of the payments up to the effective date. They are

usually charged for capital management. Effective date is every date at which a

payment takes place.

To compare the impact of different cost structures we analyze costs that are

equivalent in terms of the current value. We assume a total fee of 4% of all

payments to the contract, i.e. 960 Euro, charged on the day of payment. This is

exactly the b-cost. The current value of these fees with the applied zero-coupon

bond curve is 681 Euro, where each fee payment is discounted with the discount

value corresponding to its payment date. Now we adjust the a-cost and Capital

management cost such that they have the same current value although charged

differently over time. This results in a-cost of 3.01 % and Capital management cost

of 0.038 %. The reason that the Capital management cost is so small as a percentage

is that it is not applied to the single payments but to the sum of all payments which

becomes rather high at the end of the contract. Since the typical costs in insurance

products are usually a combination of all these fees we also simulate the impact of

these three fees together which is a commonly used cost charge (current value

3 9 681 = 2,043).

The simulation results with fees are shown in Tables 6, 7 and 8. It can be seen

that fees have a high impact on the return distribution. Even if the fees have actually

the same current value, the impact on the return distribution is different. The a-cost

weakens the expected return most since it decreases the exposure at the beginning of

the saving period. This impact is very high for the actuarial reserve product, which

even without fees only has an average equity participation of 36.77 %. The a-fee

reduces this further to 31.30 % as can be seen in Table 6. Fees on the accumulated

payments have the least impact since these are mainly charged at the end of the

saving period and therefore the impact on the equity exposure is smaller. The

insured has to carefully study whether the negative impact of the fee structure is

actually fully compensated by the federal cash payments. This highly depends on

the cost structure, which varies massively between the different products and on the

income and family situation of the insured, which in turn determines the amount of

cash benefits from the state. For the situation above with a person with one child for

whom the payment stream is optimal in the sense that it maximizes his federal cash

payments, the payments add up to 9,080 euro. For people with a greater income or

without children the support is considerably lower. Also the fee structures we

consider here are only examples, usually the contracts sold in Germany include

many different fees whose impact can be much higher. In many cases it may be

advisable to choose a product outside the class of Riester-Rente that has a smaller

cost ratio. In this case the investor can buy less costly products and can freely

choose one without capital protection, which has a higher expected return.
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7 Impact of jumps

The CPPI and the Stop loss strategy are risk free in a continuous equity model.

However, in a model with jumps, we are exposed to gap risk, which means that

the value of the portfolio of risky assets can fall below the floor. In this case the

strategy fails to generate the guarantee. In practice the leverage factor is chosen

such that even a very big jump in the market still maintains the guarantee. For

example, a 20 % jump in the market does not bring the portfolio value below

the floor for a portfolio that has been rebalanced before the jump if the leverage

factor is below 5. In this case all the equity exposure would be lost, but the

guarantee could exactly be generated. So, with a moderate leverage factor the

Table 6 Results in the actuarial reserve product with costs in the standard scenario

Cost Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

No cost 40,933 39,406 36.77 41,635 40,082 38.30

a-cost 38,922 37,685 31.30 39,623 38,366 33.00

b-cost 39,111 37,756 34.08 39,813 38,442 35.67

Cost on accum. payments 39,169 37,744 35.39 39,871 38,424 36.98

All fees applied 35,239 34,283 26.26 35,942 34,975 28.13

Table 7 Results in the CPPI strategy with leverage factor 3 with costs in the standard scenario

Cost Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

No cost 45,160 39,785 93.94 44,937 39,488 93.40

a-cost 43,049 37,461 92.26 42,731 37,026 91.35

b-cost 43,249 37,535 92.54 42,980 37,177 91.86

Cost on accum. payments 43,312 37,557 92.71 43,064 37,221 92.10

All fees applied 39,118 32,581 88.31 38,695 32,090 86.97

Table 8 Results in the Stop loss strategy with costs in the standard scenario

Cost Deterministic rates Stochastic rates

Mean Median Exposure (%) Mean Median Exposure (%)

No cost 45,392 40,903 96.56 45,269 40,733 96.10

a-cost 43,327 38,959 95.52 43,129 38,698 94.74

b-cost 43,522 39,078 95.57 43,350 38,856 94.94

Cost on accum. payments 43,595 39,114 95.61 43,447 38,907 95.06

All fees applied 39,547 35,004 92.55 39,277 34,598 91.33
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remaining gap risk is negligible. This is also reflected in our simulation results.

For the Stop loss strategy the situation is different since the equity exposure does

not decrease when approaching the floor level, which yields a much greater gap

risk.

We calculate how often the strategy fails on average due to a jump. The expected

number of guarantee shortfalls is shown in Table 9 for both, constant rates and

stochastic rates.

After the Stop loss level is reached and all money is invested in the fixed

income fund it stays there until maturity unless there is new cash flow. Therefore,

it might happen that due to the new cash flow there are several guarantee shortfalls

in one path. We state in the column Average realized gap the average sum of

injections to the fund that have to be done to generate the guarantee at maturity.

For the CPPI strategy we also look at very high leverage factors of 8, 9 and 10 for

comparison with existing literature although they are not used in insurance

business.

In case of constant rates even with a leverage factor of 10 the CPPI strategy very

rarely fails. This is due to the cap in the CPPI, which has the effect that actually

increasing the leverage factor above 3 does not increase the equity exposure much

more. The reason for this is the long maturity of the products and the corresponding

small zero bond price at the beginning, which yields a high cushion value as a

percentage of the portfolio value. The high factor can only have an affect for

payments close to maturity. Then the cushion is smaller if the past equity fund

performance was very weak and m(Pi - Ft) B Pt can hold also for values of

m greater than 3. Our results are in line with the findings in [11] where there is an

almost zero probability of reaching the floor for multipliers up to 4. However, for an

uncapped CPPI a higher leverage does increase the risk considerably.

In the case of stochastic rates we have a higher number of paths with

shortfalls. In the CPPI with small leverage factor, they mainly happen in the

case of negative interest rates, which is allowed by the model, together with a

Table 9 Results in the Stop loss strategy with costs in the standard scenario

Product Deterministic rates Stochastic rates

Number of paths

with gap

Average realized

gap

Number of paths

with gap

Average realized

gap

Actuarial 0 0 0 0

CPPI leverage 1.5 0 0 535 1,060.99

CPPI leverage 2 0 0 967 921.04

CPPI leverage 3 0 0 2,596 746.68

CPPI leverage 4 0 0 4,720 689.25

CPPI leverage 8 44 55.57 12,312 710.49

CPPI leverage 9 136 60.58 13,461 744.24

CPPI leverage 10 329 64.41 14,495 775.07

Stop loss 19,620 109.98 20,516 543.40
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very low performing equity market period5. The current value of the future cash

flow is higher than its actual amount in this case. Also the gap is often not

realized at once but distributed over several time points in a path due to the fact

that the current value of the incoming cash flows is close to or above 1 for a

longer time interval. For a higher leverage factor an unfavorable movement of

rates and stock prices can lead to a gap more easily and is not limited to

the situation where rates are negative. This shows that for a small leverage factor

the dynamic reduction of equity exposure when approaching the floor works

rather well even when rates are stochastic. When interest rates drop, the floor

rises, but in turn, the fixed income investment in zero-coupon bonds performs

better. Due to continuous trading most of the fund value is already invested in

bonds with the correct maturity when the total portfolio value is close to its

floor.

In Appendix 3 we tested further whether our findings hold for a jump model

where jumps are not displaced, which turns out to be the case.

8 Summary

We have compared the performance of savings plans within the class of different

capital guarantee mechanisms: from the Stop loss to classic investments in the

actuarial reserve fund. CPPI strategies with different leverage factors can be viewed

as a compromise between these two extremes. In bullish markets savings plans with

a high equity ratio perform the best, in bearish markets the classic insurance concept

shows better returns. A Stop loss strategy suffers from gap risk, whence a CPPI

strategy combines the strength of both gap risk minimization and equity ratio

maximization in both, a constant rate scenario as well as in the stochastic rate

scenario. Even for a high leverage factor the gap risk of the capped CPPI turns out to

be relatively small. The effect of fees on the savings plans dominates the

performance, especially in typical fee structures found in the German Riester-Rente.

The private investor is advised to check carefully if the federal cash payments can

compensate the fees taking into account his own salary and tax situation. We

propose a jump diffusion model, which is easy to implement and where parameters

can be easily estimated. The robustness checks suggest that the assumption of

displaced jumps does not lead to very different results than the usual assumption of

jump sizes in the entire real line. However, one has to check carefully in each

situation if the model is appropriate.
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5 The possibility of negative rates is often seen as a drawback of Gaussian models and sometimes

numerical adjustments are used to avoid them. We decided for two reasons to allow them. Firstly,

negative rates could be observed in the past over short time periods. Secondly, a correction would not be

in line with the pricing of zero coupon bonds under the risk neutral measure.
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Appendix 1

In the following we derive several properties of the displaced double exponential

jump diffusion model and the parameter estimation.

Jump distribution

The jump part of the process has the density

fYðyÞ ¼

pg1e
�ðy�jÞg1 if y� j;

0 if jyj\j;

ð1� pÞg2e
ðyþjÞg2 if y� � j;

8

>

<

>

:

with g1[ 1, g2[ 0 and 0 B p B 1. We show a graph of the density function in

Fig. 6.

Similar to the work of Kou [15] we calculate

E½Y� ¼

Z

1

�1

yfYðyÞdy

¼

Z

1

j

ypg1e
�ðy�jÞg1dyþ

Z

�j

�1

yð1� pÞg2e
ðyþjÞg2dy

¼p
1

g1
� ð1� pÞ

1

g2
þ jð2p� 1Þ;
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Fig. 6 Displaced Double-Exponential density of Y with parameters j = 2.31 %, g1 = g2 = g =

1/1.121 %, p = 0.5
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E½Y2� ¼

Z

1

j

y2pg1e
�ðy�jÞg1dyþ

Z

�j

�1

y2ð1� pÞg2e
ðyþjÞg2dy

¼p
2

g21
þ
2j

g1

� �

þ ð1� pÞ
2

g22
þ
2j

g2

� �

þ j2

and

E½eY � ¼pg1
eþj

g1 � 1
þ ð1� pÞg2

e�j

g2 þ 1
:

Using the relation Var½Y� ¼ EðY2Þ � EðYÞ2 we get

Var½Y� ¼ ð1� pÞ
ð2þ g2jð2þ g2jÞÞ

g22
þ p

ð2þ g1jð2þ g1jÞÞ

g21

� ð�1þ pÞ
1þ g2j

g2
þ p

1þ g1j

g1

� �2

:

The drift due to the jump part is given by

d :¼kE½eY � 1�

¼k pg1
eþj

g1 � 1
þ ð1� pÞg2

e�j

g2 þ 1
� 1

� �

:
ð5Þ

Variance and volatility of log returns

The variance of the random number ln St
S0
of the process (1) can be written as

Var ln
St

S0

� �

¼r21t þ Var
X

Nt

j¼1

Yj

" #

¼r21t þ ktE½Y2�

and the volatility as

r1tot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t
Var ln

St

S0

� �

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ kE½Y2�
q

: ð6Þ

Parameter estimation

Here we describe the parameter estimation for the displaced double exponential

jump diffusion process. We estimate the parameters based on the historical data of

the MSCI Daily TR (Total Return) Gross (gross dividends reinvested) in USD

for the period between January 1 1980 and October 2 2009. We denote these prices

with x0; x1; . . .; xN and the log-returns by

di :¼ ln
xi

xi�1

; i ¼ 1; . . .;N:

The estimate for the expected daily log return is
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�d ¼
1

N

X

N

i¼1

di:

The estimate for the total volatility r̂1tot is

r̂1
2
tot ¼

Na

N � 1

X

N

i¼1

d2i � N �d2

 !

;

where Na is the number of observations per year.

To determine the parameters for the jump process we have to define a level j such

that di with ||di || C j is considered to be a jump. To determine this j we calculate for

a given level u 2 ½0; 1� the u-quantile a and the (1 - u)-quantile b of the empirical

distribution. For the analyzed MSCI World Index it turns out that a and b are almost

symmetric and j is taken such that j^ b and-j^ a. The level u should be chosen

such that the resulting returns are intuitively considered as jumps. If u is chosen too

high, even small log-returns are considered jumps, and if u is too low, almost no

jumps occur. Of course, this level is subjective. We have chosen u = 0.01. In this

case the minimal jump size is estimated j = (b - a)/2 = 2.31% such that only daily

changes of more than 2.31 % are considered to be jumps. Smaller changes can be

explained with the diffusion part with sufficiently high probability. It also turns out

that for the analyzed MSCIWorld Index, the average up-jump and the average down-

jump is almost equal and we use g = g1 = g2 and p = 0.5.

The value g of the single parameter exponential distribution is chosen such that

the mean of the distribution fits the mean of the observed jumps. From the financial

data and the already fixed parameters we obtain h = 1/g = 1.121%. The number of

jumps divided by the total number of observations yields an estimate for the jump

frequency. Annualizing this frequency we can estimate k to be 5.21, which

intuitively is 2% of the trade days per year.

Finally we have to correct the estimator for the volatility according to (6) since

the volatility consists of the jump part and the diffusion part. We define the constant

drift parameter c in (1) by c: = l - d with d as defined in (5) such that the process

St has the desired total drift l, meaning

E St½ � ¼ S0e
tl:

We summarize the estimated parameters in Table 10.

Appendix 2

Here we derive the distributional properties of the simple CPPI without borrowing

restrictions under the following model6:

dSt ¼ St ldt þ rdWt½ � ð7Þ

dDt;T ¼ f0;tDt;Tdt

6 Hence we assume a deterministic instantaneous spot rate rt coinciding with the corresponding forward

rate f0,t observed at time 0.
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The value of the floor is Ft = Dt,TB. We follow mainly [2] with the difference that

the instantaneous interest rate is allowed to change deterministically over time. Let

Ct: = Pt - Ft be the cushion process. Then

dCt ¼dPt � dFt

¼
mCt

St
dSt þ

Pt � mCtð Þ

Dt;T
dDt;T

� �

�
Ft

Dt;T
dDt;T

¼Ct

m

St
dSt �

m

Dt;T
dDt;T þ

Pt

CtDt;T
dDt;T �

Ft

CtDt;T
dDt;T

� �

¼Ct

m

St
dSt �

m� 1

Dt;T
dDt;T

� �

¼Ct

m

St
dSt � m� 1ð Þf0;tdt

� �

¼Ct mrdWt þ ml� m� 1ð Þf0;t

 �

dt
� �

;

which is solved by

Ct ¼C0 exp mrWt þ

Z

t

0

ml� m� 1ð Þf0;s
� �

ds�
1

2
r2m2t

0

@

1

A

¼C0 exp mrWt þ mlt � m� 1ð Þ

Z

t

0

f0;sds�
1

2
r2m2t

0

@

1

A

¼C0

Smt
Sm0

exp � m� 1ð Þ

Z

t

0

f0;sdsþ ðm� m2Þ
1

2
r2t

0

@

1

A;

ð8Þ

since St ¼ S0 exp lt � 1
2
r2t þ rWt

� �

: Together with C0 = P0 - B D0,T and Ft = B

Dt,T we obtain

Pt ¼ BDt;T þ
P0 � BD0;T

Sm0
exp 1� mð Þ

Z

t

0

f0;sdsþ m� m2
� � r2

2
t

8

<

:

9

=

;

Smt :

which is the same as (4) since
R t

0
f0;sds ¼ � lnD0;t:

Table 10 Estimated parameters for the DDE-process

Parameter Value

Total volatility r̂1 tot 14.3%

Volatility of the diffusion part r̂1 11.69%

Jump intensity k 5.209

Minimum jump size j 2.31%

Expected jump size above minimum jump size h 1.121%

Drift adjustment d 0.339%
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To derive E Pt½ �; we recall that E X½ � ¼ exp lX þ 1=2r2X

 �

; if lnX is normally

distributed with mean lX and variance rX
2 . Using Eq. (8) we get

E Pt½ � ¼E Ft½ � þ E Ct½ �

¼BDt;T þ C0 exp mlt � m� 1ð Þ

Z

t

0

f0;sds

0

@

1

A

¼BDt;T þ ðP0 � BD0;TÞ exp m

Z

t

0

ðl� f0;sÞdsþ

Z

t

0

f0;sds

0

@

1

A:

This shows that in the uncapped CPPI the expected value of the total investment can

be increased by increasing the multiplier m as long as the integrated forward rate is

smaller than the integrated equity fund drift.

Appendix 3

In order to test robustness we also estimate the parameters for the double

exponential jump diffusion model without displaced jumps and compare the sim-

ulation results. We follow [11] by estimating the parameters based on the empirical

characteristic function of the logarithmic returns. Let ŴðuÞ be the empirical

characteristic function and WhðuÞ the theoretical characteristic function for the

model with parameter set h. The estimation then reduces to minimizing the

quadratic distance
Z K

�K

jŴðuÞ �WhðuÞj
2
wðuÞdu;

where w(u) is a weighing function and K the cutoff parameter. We use the weighing

function:

wðuÞ :¼
exp �r2Du

2
� �

1� exp r2Du
2ð Þ
;

with rD
2 being the variance of the log returns d1; . . .; dN : The minimization is done

with a simulated annealing algorithm. We summarize the estimated parameters in

Table 11. The minimization converges very slowly and different value for the

temperature of the annealing algorithm and different starting values lead to rather

different estimations for h and k. This is due to the fact that there are several

combinations of the two parameters which lead to almost the same fit to the data. It

is hard to distinguish whether there are small jumps with high intensity or larger

jumps with low intensity. The parameter p and r̂1 turn out to be much more stable.

While p is very close to 0.5 as we found also with our method, the volatility r̂1 is

estimated greater without the displaced jumps. This is reasonable since there is a

positive probability that also the diffusion part of the process causes movements

above the minimum jump size j when discretized. These movements are neglected
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in our estimation method for the diffusion part since they are all attributed to the

jumps. We show the simulation results in Table 12. We find that the results for the

mean, the median and the exposure are very similar. Both model describe the return

distribution very well. For the normal double exponential jump diffusion model the

gap risk is also zero for the capped CPPI. For Stop loss, the average realized gap is

smaller than with the displaced jumps due to the lower expected jump size but in

turn the higher intensity.
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